Reactions of Mercury Halides with CO, NO, N_2 , and Unsaturated Hydrocarbons in Argon Matrices

David Tevault, Dennis P. Strommen, and Kazuo Nakamoto*

Contribution from the Todd Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53233. Received June 1, 1976

Abstract: A series of novel complexes of the type HgX_2L (X = F, Cl, Br, or I; L = CO, NO, N₂, C₂H₄, C₃H₆, and 1,3-C₄H₆) has been prepared through the reaction of HgX_2 vapor directly with the respective ligands in argon matrices. For L = CO, NO, and N₂, the ligand vibrations (except for L = N₂) are shifted to higher whereas the Hg-X vibrations are shifted to lower frequencies by complex formation. For L = C₂H₄, C₃H₆, C₆H₆, and 1,3-C₄H₆, the out-of-plane bending vibrations are shifted to higher frequencies, the in-plane bending vibrations unshifted, and the Hg-Cl vibrations are shifted to lower frequencies upon complexation. For L = C₃H₆ and 1,3-C₄H₆, the C=C stretching vibration shifted to a lower frequency. Evidence is presented to show that butadiene may form a 2:1 (HgCl₂/C₄H₆) complex if relatively high concentrations of HgCl₂ and butadiene are reacted. The structure of these complexes and the nature of the metal-olefin bonding are discussed based on infrared spectra.

Recently, a number of novel coordination compounds of the ML_n type (M = Ni, Pd, Pt etc.; L = CO, N₂, O₂, NO, PF₃ etc.; $n = 1 \sim 4$) have been prepared, and their vibrational spectra were analyzed in inert gas matrices.¹ Van Leirsburg and $DeKock^2$ have reacted metal dihalide (MX₂) molecules with ligands such as CO, NO, and N₂, and measured the infrared spectra of the MX₂L complexes in inert gas matrices. We have also studied the reactions between bent triatomic molecules such as $SnCl_2$ and PbX_2 (X = F, Cl, Br, and I) and the ligands such as CO, NO, and N₂ in argon and nitrogen matrices by infrared spectroscopy.³ Now, our studies have been extended to include the reactions between linear triatomic molecules HgX_2 (X = F, Cl, Br, and I) and the ligands such as CO, NO, N_2 , C_2H_4 , C_3H_6 , C_6H_6 , and 1,3- C_4H_6 . Thus far, there have been no reports on the formation of the HgX_2 (olefin) type complexes except for our preliminary report on the $HgX_2C_2H_4$ series.⁴ Our investigations show that the major products formed by these reactions are 1:1 complexes of the MX_2L type since both components are in high dilution in inert gases. In the case of 1,3-butadiene, however, there is a possibility of forming a 2:1 ($HgCl_2/C_4H_6$) complex since 1,3-butadiene is known to form such a complex with Pt(II) by utilizing its two C==C bonds.5

Experimental Section

Compounds. Mercury halides were purchased from Ventron Corp., Danvers, Mass. Argon, nitrogen, nitric oxide, carbon monoxide, ethylene, propylene, and 1,3-butadiene were purchased from Matheson Gas Products, Joliet, Ill. ¹³CO (95% enriched) was purchased from Merck & Co., St. Louis, Mo. Anhydrous thiophene-free benzene (from Fisher) was dried over sodium and benzophenone before use. C_6D_6 was obtained from Wilmad Glass Co. and distilled prior to use. C_2D_4 was obtained from Phillips Petroleum Co. and frozen at 77 K to remove volatiles before use. All gas samples were prepared on a glass vacuum line using standard procedures.

Measurements of Infrared Spectra in Argon Matrices. Matrix reactions were performed by cocondensing mercury halide vapor with the reactant such as CO, NO, N₂, or olefin diluted in argon (dilution ratio, 1/200 to 1/2000) on a ~10 K CsI window cooled by a Cryogenic Technology Model 21 refrigerator. Detailed description of our apparatus is given in our previous paper.³ Infrared spectra were measured during and after sample deposition on a Beckman IR-12 infrared spectrophotometer. High resolution spectra were recorded using a 10 or 20 cm⁻¹ per in. chart expansion and a 4 or 8 cm⁻¹ per min chart speed. Calibration of frequency readings was made using the rotation-vibration bands of standard molecules. Reproducibility of the spectra was checked by running the spectra several times. The error in frequency reading was always within ± 0.3 cm⁻¹. In Figures 1-7, the optical density of the strongest bands ranged from 0.6 to 0.7. **Computer Simulation of Spectra.** In the case of $HgCl_2CO$ complex (Figure 4), computer-simulation spectra were obtained by using a program which plots the sum of Gaussian bands of given frequencies, intensities, and widths.³

Results and Discussion

(1) Free HgX₂. The infrared spectra of mercury halides in krypton matrices have been observed by Loewenschuss et al.^{6,7} Figure 1 illustrates the infrared spectra of HgF₂, HgCl₂, HgBr₂, and HgI₂ observed in argon matrices, and Table I lists the observed frequencies for the monomeric species. Previous workers^{6,7} observed three bands at 660.5, 641.5, and 639.0 cm⁻¹ for matrix-isolated HgF₂ molecules, and assigned the last two bands to monomeric HgF₂ (split by the site effect) while the first band was left unassigned. In our case, the assignment is straightforward since only one band was observed at 645.9 cm⁻¹.

For HgCl₂, Loewenschuss et al.^{6.7} report four bands at 411.5, 407.5, 402.5, and 398.0 cm⁻¹ in a krypton matrix. The first band was attributed to an extra band due to a site effect whereas the remaining three bands were assigned to Hg³⁵Cl₂, Hg³⁵Cl³⁷Cl, and Hg³⁷Cl₂, respectively. In an argon matrix, we observed three bands at 416.3, 412.0, and 407.6 cm⁻¹ which are assigned to the three isotopic species mentioned above. However, the last band is stronger than that expected for the 9:6:1 intensity pattern of the dichloro compound.⁸ This is probably due to the overlap of a broad weak dimer band around 407 cm⁻¹.

Loewenschuss et al.^{6,7} report three bands at 293.0, 285.5, and 270 cm⁻¹ for HgBr₂ in a krypton matrix, and assigned them to the monomer, dimer, and polymer in the same order of frequency. These assignments were confirmed by the observation that the polymer band disappears almost completely in the double-oven experiment. As is shown in Figure 1, we have observed three bands at 297.0 (strong, sharp), 290.3 (weak, sharp), and 281 (medium, broad) cm⁻¹, and assigned them to the monomer, dimer, and polymer, respectively, as suggested by the previous workers.

Previously, Loewenschuss et al.^{6,7} reported four bands at 237.5 (monomer), 229 (dimer), 220 (polymer), and 234.5 cm⁻¹ (unassigned) for HgI₂ in a krypton matrix. As is shown in Figure 1, we observed one sharp band at 234.8 cm⁻¹ and one broad band of equal intensity at 228.3 cm⁻¹, and assigned them to the monomer and polymer (including dimer), respectively. Since the concentration of the polymer is rather high for HgI₂, it was not possible to make clear-cut assignments for the HgI₂-CO system (vide infra).

Table I. HgX₂ and Ligand Frequencies of HgX₂L in Argon Matrices (cm⁻¹)

		$\nu(\text{HgX}_2)$			ν(L)			
x	L	Free	Complex	Shift	Free	Complex	Shift	
F	N ₂	645.9	643.2	-2.7				
	NŌ	645.9	641.7	-4.2	1875.0	1891.6	+16.6	
	CO	645.9	638.3	-7.6	2138.0	2160.6	+22.6	
	$C_2H_4^a$	645.9	620.9	-25.0	946.8	972.6	+25.8	
³⁵ Cl	CO	416.3	412.0	-4.3	2138.0	2156.9	+18.9	
	¹³ CO	416.3	412.0	-4.3	2092.7	2109.9	+17.2	
	$C_2H_4^a$	416.3	404.7	-11.6	946.8	957.6	+20.8	
	$C_2 D_4^a$	416.3	404.7	-11.6	719.6	733.5	+13.9	
Br	CO	297.0			2138.0	2153.1	+15.1	
	$C_2H_4^a$	297.0			946.8	965.5	+18.7	
I	CO	234.8			2138.0	b		
	$C_2H_4^a$	234.8			946.8	960.1	+13.3	

^a Only the CH₂ wagging band is listed. ^b Probably hidden under the strong band at 2149 cm⁻¹.

Figure 1. Infrared spectra of HgX_2 (X = F, Cl, Br, and l) isolated in argon matrices.

Figure 2. Matrix-isolation infrared spectra of CO and HgX₂CO (X = F, Cl, Br, and I) in the CO stretching region. m, m*. c, and i denote monomeric CO, CO-H₂O, HgX₂CO, and HF-CO, respectively.

(2) HgX₂CO Complexes. Figure 2 illustrates the infrared spectra (CO stretching region) of the HgX₂CO complexes (X = F, Cl, Br, and I) in argon matrices at ~ 10 K. As stated in our previous paper,³ the bands at 2149 (marked by m*) and 2138

Figure 3. Matrix-isolation infrared spectra of HgF_2L ($L = C_2H_4$, CO, NO, and N_2) in the Hg-F stretching region. c denotes the band due to HgF_2L in each case.

 cm^{-1} (marked by m) are due to CO-H₂O and monomeric CO, respectively.9 The m* band can be eliminated by using very fast deposition rates. If the slow spray-on method is used, these two bands are always observed in the spectra of the HgX_2 -CO systems and their relative intensity varies depending upon the experimental condition. In the HgF₂-CO system, two new bands are observed at 2162 (marked by i) and 2160.6 cm^{-1} (marked by c). The former is due to the CO complex with HF which was produced by the reaction of HgF₂ with traces of H_2O in the system,² whereas the latter is assigned to the HgF₂CO complex. In the low-frequency region, a new band appears at 638.3 cm⁻¹ in addition to the Hg-F stretching band of free HgF₂ at 645.9 cm⁻¹ (second trace of Figure 3). This new band can be assigned to the HgF₂CO complex. Then, the Hg-F stretching band has been shifted by 7.6 cm^{-1} to lower frequency by complexation.

If HgCl₂ is reacted with CO in an argon matrix, a new band appears at 2156.9 cm⁻¹ together with those due to CO-H₂O (m*) and monomeric CO (m) (Figure 2). This new band is assigned to the HgCl₂CO complex. All three bands are shifted to 2109.9 (c), 2102.7 (m*), and 2092.7 (m) cm⁻¹ when ¹³CO is reacted with HgCl₂. The observed shift of 47.0 cm⁻¹ from HgCl₂¹²CO to HgCl₂¹³CO is close to that expected for free diatomic CO (48.3 cm⁻¹), indicating that the electronic structure of CO has been only slightly perturbed by the interaction with HgCl₂.

Figure 4. Matrix-isolation infrared and computer-simulation spectra of the $HgCl_2$ -CO system. Left, CO stretching region; center, Hg-Cl stretching region; right, computer-simulation spectrum in the Hg-Cl stretching region. The upper (a) and lower (b) curves were obtained with the Ar/CO ratios of 200/1 and 2000/1, respectively.

When HgCl₂ is reacted with CO in a relatively high concentration (CO/Ar = 1/200), four bands are observed at 416.3, 412.0, 407.6, and 403.2 cm⁻¹ as is shown by the upper center trace of Figure 4. The first band is definitely due to unreacted Hg³⁵Cl₂. However, the second and third bands are stronger than that expected for the 9:6:1 intensity pattern⁸ of free HgCl₂. This result can only be explained if we assume that the bands due to HgCl₂CO (at 412.0, 407.6, and 403.2 cm⁻¹) are overlapped on those of free HgCl₂. These assignments are supported by a computer-simulation spectrum shown in the upper right trace of Figure 4. This was obtained with the assumptions that both HgCl₂ and HgCl₂CO exhibit three bands at the frequencies mentioned above with the 9:6:1 intensity ratio and that the relative concentration of free and complexed HgCl₂ is 6:4 (the half-bandwidth of each band was taken to be 3.4 cm⁻¹). The upper left trace of Figure 4 shows the spectrum of the same matrix in the CO stretching region. It is seen that the concentration of free CO is rather high since this experiment was carried out with excess CO.

If a similar experiment is carried out with excess $HgCl_2$ (CO/Ar = 1/2000), the spectrum shown by the lower center trace of Figure 4 is obtained. It is very similar to that of free HgCl₂ although the intensity ratio of the three peaks is not exactly 9:6:1. A computer-simulation spectrum (lower right trace of Figure 4) reveals that only 6% of HgCl₂ is complexed to CO in this case. The lower left trace of Figure 4 shows the spectrum of the same matrix in the CO stretching region. It is seen that the intensity of the free CO band (m) is close to that of HgCl₂CO (c). Since the concentration of CO is relatively low, about a half of the CO was reacted with HgCl₂ in this experiment.

When HgBr₂ is reacted with CO in an argon matrix, a new band appears at 2153.1 cm⁻¹ due to complex formation (Figure 2). A similar experiment with HgI₂ produces a new band at ca. 2145 cm⁻¹ which is between the CO-H₂O (m*) band at 2149 cm⁻¹ and the free CO band (m) at 2138 cm⁻¹. Thus far, the CO stretching bands of HgX₂CO have been assigned at HgF₂CO, 2160.6 > HgCl₂CO, 2156.9 > HgBr₂CO, 2153.1. If we assign the 2145-cm⁻¹ band to HgI₂CO, the shift of the CO stretching band from the bromide to the iodide (ca. 8 cm⁻¹) is too large compared with those from the fluoride to the chloride (3.7 cm⁻¹) and from the chloride to the bromide (3.8 cm⁻¹). Thus it is most reasonable to assume that the HgI₂CO band is hidden under the CO-H₂O (m*) band near 2149 cm⁻¹. The 2145-cm⁻¹ band is probably due to the CO complexed with polymeric HgI₂. plex formation, we realize that an alternate explanation would treat the observed effects as nearest-neighbor interactions. We prefer the former interpretation due to the following reasons: (1) We find higher concentrations of HgCl₂CO than statistically predicted by completely random orientation of the two components. For example, in a 2000/1 (Ar/CO) reaction with HgCl₂, statistics predicts ca. 0.6% of HgCl₂ to have nearest neighbor interactions if we assume 12 nearest neighbors for each HgCl₂ molecule. On the other hand, we found ca. 6% of HgCl₂ reacted with CO as determined by the relative intensities of ν (HgCl, complex)/ ν (HgCl, free) (vide infra). (2) We find that the bands are rather sharp (half-bandwidth, ca. 2.0 cm^{-1} for $\nu(CO)$ and less than 3.5 cm^{-1} for $\nu(HgCl)$) in the HgCl₂-CO system. If what we observed was a "nearest neighbor interaction", we would have expected to see rather broad bands due to the many possible orientations and HgCl₂-CO distances. Furthermore, a HgCl₂-CO experiment in a Kr matrix showed almost no differences in bandwidths or frequency shifts, whereas these would be expected in the case of a "nearest neighbor interaction".

As stated in our previous paper,³ the CO stretching frequency of MX₂CO is governed by the σ donation from CO to the metal. Since this donation originates in the 5σ of CO which is slightly antibonding, the CO stretching frequency becomes higher as the degree of σ donation increases. Thus, in the above HgX₂CO series, σ donation from CO decreased in the order F > Cl > Br > I. The same order of the halogens was noted previously for the PbX₂CO series.³ It should be noted, however, that there are rather large gaps in the CO frequencies between PbX_2CO and HgX_2CO . Thus, the order of the CO stretching frequencies are: CuF_2CO , 2210 > NiF₂CO, 2200 > CrF₂CO, $2188 > MnF_2CO, 2183 > PbF_2CO, 2176 > HgF_2CO, 2160.6;$ $NiCl_2CO, 2189 > SnCl_2CO, 2176 \approx PbCl_2CO, 2176 >$ HgCl₂CO, 2157. This result can only be explained if we assume that the degree of σ donation in HgX₂CO is much less than that in PbX₂CO. Alternatively, we may conclude that π back-bonding is more extensive in HgX₂CO than in PbX₂CO since it tends to decrease the CO stretching frequency. As stated in our previous paper, the shift of the M-X stretching band to a lower frequency is proportional to the degree of σ donation from CO to the metal. Namely, the M-X stretching frequency decreases as the metal accepts more electrons. In PbF₂CO,³ the antisymmetric Pb-F stretching band of free PbF_2 at 507.2 cm⁻¹ is shifted by -10.9 cm⁻¹ whereas the antisymmetric Hg-F stretching band of HgF2 at 645.9 cm⁻¹ is shifted by -7.6 cm⁻¹ by complexation with CO. Then, the percentage shift for $PbF_2CO(10.9/507.2)$ is much larger than that for HgF₂CO (7.6/645.1). This again suggests that σ donation is much less in HgF₂CO than in PbF₂CO. The same trend is found in the M-X stretching frequencies of HgCl₂CO and PbCl₂CO.

(3) HgF_2L Complexes (L = CO, NO, N₂, and C₂H₄). In the previous section, we have discussed the spectrum of HgF_2CO . Since HgF₂ exhibits a sharp single Hg-F stretching band, we have chosen the HgF₂L system to study the effect of changing the ligand (L) on the Hg-F frequency. When HgF_2 is reacted with NO, three bands are observed at 1891.6, 1875.0, and 1866 cm^{-1} which can be assigned to HgF₂NO, monomeric NO, and dimeric NO (cis), respectively.¹⁰ In this case, the NO stretching band has been shifted by $+16.6 \text{ cm}^{-1}$ by complex formation (for HgCl₂NO, the shift was +14.5 cm⁻¹). Figure 3 shows the spectrum of the HgF_2 -NO system in the low frequency region. A new band at 641.7 cm^{-1} is definitely assignable to HgF₂NO. A similar experiment with N₂ gives a new band at 643.2 cm^{-1} (HgF₂N₂). However, no new bands were observed when HgF_2 was reacted with O_2 in a rather high concentration (2% in argon). We have previously reported the spectrum of $HgF_2(C_2H_4)$.⁴ As is shown in Figure 3, this complex exhibits a new band at 620.9 cm^{-1} . If we arrange

Although we have interpreted our results in terms of com-

Tevault, Strommen, Nakamoto / Reactions of Mercury Halides in Argon Matrices

Table II. Vibrational Frequencies of Ethylene, Benzene, and 1,3-Butadiene and Th	eir HgCl ₂	Complexes (cm	1-1)
--	-----------------------	---------------	------

C ₂ H ₄ gas ^a	C ₂ H ₄ Ar-matrix ^b	C ₂ H ₄ Ar-matrix ^c	HgCl ₂ (C ₂ H ₄) Ar-matrix ^c	Assignment ^h
1444 949 810	1440 946 807	1441.3 946.8 —	1441.3 967.6 	$ \nu_{12}, CH_2 \text{ bend (ip)} $ $ \nu_{7}, CH_2 \text{ wag (op)} $ $ \nu_{10}, CH_2 \text{ rock (ip)} $
C_6H_6 gas ^d	C ₆ H ₆ Ar-matrix ^e	C ₆ H ₆ Ar-matrix ^{c,f}	HgCl ₂ (C ₆ H ₆) Ar-matrix ^c	
1485 1037	1480.5 1038	1484.4 1041.4 1039.8	1484.4 1041.4 1039.8	ν_{13} , ring def (ip) ν_{14} , CH bend (ip)
671	682.5	675.5	685.2	v4, CH bend (op)
C ₄ H ₆ gas ^g		C4H6 Ar-matrix ^c	HgCl ₂ (C ₄ H ₆) Ar-matrix ^c	
1599 1385 1013 909		1 596.7 1 380.3 1 022.6 906.0	1581.7 1027.3 922.0	$ \nu_{8}, C = C \text{ str (ip)} \\ \nu_{10}, CH_{2} \text{ bend (ip)} \\ \nu_{14}, CH_{2} \text{ twist (op)} \\ \nu_{18}, CH_{2} \text{ wag (op)} $

^a T. Shimanouchi, J. Chem. Phys., **26**, 594 (1957). ^b Reference 12. ^c Present work. ^d G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", Van Nostrand, New York, N.Y., 1945, p 365. ^e Reference 16. ^f Only monomer bands are listed (see text). ^g Reference 19. ^h Key: ip, in-plane mode; op, out-of-plane mode.

these five ligands in the order of the Hg-F stretching frequency, the following order is obtained:

L =	free ≈ 0	$)_2$	N_2	NO		CO		$\mathrm{C}_{2}\mathrm{H}_{4}$
$\nu(\text{Hg-F}), \text{cm}^{-1}$	645.9	>	643.2	> 641.7	>	638.3	\gg	620.9

Similar orders of the ligands have been obtained previously for the NiF₂L² and SnCl₂L series.³ For the HgCl₂L series, we obtain the order:

$$\frac{L}{\nu(Hg^{35}Cl_2), cm^{-1}} \frac{free}{416.3} > \frac{CO}{412.0} \gg \frac{C_2H_4}{404.7}$$

As discussed in our previous paper,³ the M-X stretching frequency is lowered as the metal accepts more electrons from the ligand. Thus, the above series indicates that the degree of electron donation follows the order: $C_2H_4 \gg CO > NO > N_2$ > O_2 . Again a rather large gap is noted between C_2H_4 and CO in this series. The reason for this will be discussed in the following section.

Table I summarizes the observed frequencies of the HgX_2L complexes and the shifts of HgX_2 and L vibrations upon complex formation.

(4) HgCl₂ Complex with Ethylene. In the previous communication,⁴ we have briefly reported the infrared spectra of the HgX₂(C₂H₄) series. A more complete report including the C₂D₄ complexes will be made below.

The infrared spectrum of ethylene in an argon matrix has been reported by Barnes and Howells.¹¹ Below 2000 cm⁻¹, they observed three bands at 1440 (ν_{12} , B_{3u}, CH₂ bend), 946 (ν_7 , B_{1u}, CH₂ wag), and 807 cm⁻¹ (ν_{10} , B_{2u}, CH₂ rock). As is shown in Figure 5, we observed two strong bands at 1441.3 (ν_{12}) and 946.8 cm⁻¹ (ν_7) in an argon matrix. The 807-cm⁻¹ band (ν_{10}) reported by previous workers was too weak to be observed. When ethylene was reacted with HgCl₂, no changes were observed in the CH stretching region and the 1441.3cm⁻¹ band did not shift while a new band appeared at 967.6 cm⁻¹. Lack of shifts in the CH stretching region is common to all other systems studied in this paper. The 967.6-cm⁻¹ band (marked by c in Figure 5 bottom left) has been assigned to the ν_7 ethylene mode of HgCl₂(C₂H₄) since its frequency is sen-

sitive to the change in the halogen.⁴ Then. the CH₂ wagging mode has been shifted by +20.8 cm⁻¹ to a higher frequency upon complexation. This assignment is also supported by an isotopic study of ethylene where the ν_7 mode of free C₂D₄ in argon is at 719.6 cm⁻¹. When C₂D₄ was reacted with HgCl₂, a new band appeared at 733.5 cm⁻¹ which was assigned to the ν_7 mode of HgCl₂(C₂D₄). The ratio, ν_7 (C₂H₄)/ ν_7 (C₂D₄) is almost the same for free ethylene (1.316) and the complexed ethylene (1.319). This result also implies that no drastic changes in electronic structure occurred by the complexation of ethylene to HgCl₂. Table II summarizes the observed frequencies of C₂H₄ and HgCl₂(C₂H₄).

As reported previously,⁴ free HgCl₂ in an argon matrix exhibits three bands at 416.3 (Hg³⁵Cl₂), 412.0 (Hg³⁵Cl³⁷Cl), and 407.6 cm⁻¹ (Hg³⁷Cl₂) with an intensity ratio of about 9:6:1. When HgCl₂ was reacted with ethylene, two new bands were observed at 404.7 and 399.6 cm^{-1.4} These bands can be assigned to Hg³⁵Cl₂(C₂H₄) and Hg³⁵Cl³⁷Cl(C₂H₄), respectively. The Hg³⁷Cl₂(C₂H₄) band is too weak to be observed.

Table III. Observed Frequencies^d and Band Assignments of C_3H_6 and $HgCl_2(C_3H_6)$ in Argon Matrices (cm⁻¹)

C ₃ H ₆ gas ^a	C ₃ H ₆ Ar-matrix ^b	C ₃ H ₆ Ar-matrix ^c	HgCl ₂ (C ₃ H ₆) Ar-matrix ^c	Band assignment ^b
1652	1650 (s)	1655.2 (m) 1652.0 (m)	1636.7 (m)	ν ₆ , A', C=C str
1474	1453 (vs)	1454.4 (vs)	1454.4 (vs)	ν_7 , A', CH ₃ asym def
1443	1439 (s)	1440.1 (s)	1440.1 (vs)	ν_{16} , A", CH ₃ asym def
1419	1415 (m)	1416.7 (w)	1416.7 (w)	ν_8 , A', CH bend
1378	1373 (w)	1375.2 (w)	1375.2 (w)	ν_9 , A', CH ₃ sym def
1298				ν_{10} , A', CH ₂ bend
1229	I 212 (m)			ν_{11}, A', CH_2 wag
1172				ν_{12} , A', CH ₃ rock
1045	1043 (s)	1044.1 (m)	1046.2 (m)	ν_{17} , A ^{''} , CH ₃ rock
991	998 (s)	997.9 990.7	1004 (w, br)	ν_{18}, A'', CH bend
920	932 (m)	932 (m)	932 (m)	ν_{13} , A', CC str
912	908 (vs)	909.9 (vs)	930.1 (vs)	ν_{19}, A'', CH_2 wag
578	578 (s)	578.9 (m)	579.9 (m, br)	ν_{20} , A", CH ₂ twist

^a Reference 15. ^b Reference 12. ^c This work. ^d Intensity designation: vs, very strong; s, strong; m, medium; w, weak; br, broad.

The average shift of the two bands observed is -12.0 cm^{-1} . These frequencies are not sensitive to the deuteration of ethylene.

As stated in the previous section, the large gap of the HgX₂ stretching frequencies between the CO and C₂H₄ complexes suggests that electron donation from the ligand to the metal is much larger in HgX₂(C₂H₄) than in HgX₂CO. In HgX₂(C₂H₄), electron donation presumably occurs from its filled 2p π MO to the vacant metal 6p orbital.¹² If we assume a side-on structure in which ethylene is bonded to the metal with its plane parallel and its C==C axis perpendicular to the X-Hg-X axis, an appreciable overlap of the ethylene 2p π MO and the metal orbital is expected (see below). On the other

hand, the overlap of the 5σ orbital of CO with the metal orbital would be less since significant 5σ electron density is restricted to a small volume around the carbon atom.² These differences in geometry and electronic structure of the complexes are probably responsible for the rather large gap of the frequencies discussed above.

The side-on structure shown above also accounts for the lack of shifts of the in-plane modes such as CH stretching and CH₂ bending and for the shift of the out-of-plane CH₂ wagging mode (ν_7) to a higher frequency. In this mode, all four hydrogen atoms vibrate in the direction perpendicular to the C₂H₄ molecular plane, and such a vibration requires more energy in the complex due to repulsive forces between these hydrogens and HgCl₂. A similar shift of ν_7 to a higher frequency was noted previously¹³ for Zeise's salt, K[PtCl₃(C₂H₄)]H₂O. However, the shift in Zeise's salt (+80 cm⁻¹) is much larger than that in HgCl₂(C₂H₄) (+20.8 cm⁻¹) since the M-C₂H₄ interaction is much stronger and ethylene is probably much closer to the metal in the former than in the latter complex.

Previously, Fredin and Nelander¹⁴ prepared the $Cl_2(C_2H_4)$ complex in a nitrogen matrix, and proposed a C_{2v} structure in which the Cl-Cl bond coincides with the C_2 axis perpendicular to the ethylene plane. The C_{2v} structure of the complex was supported by the observation of a number of new bands which are forbidden under the V_h symmetry of free ethylene. In our

Figure 6. Matrix-isolation infrared spectra of propylene and HgCl₂-propylene in the 1700-550-cm⁻¹ region. c denotes peaks due to HgCl₂(C₃H₆).

case, the V_h symmetry of ethylene remains unchanged by complexation since the HgCl₂-C₂H₄ interaction is relatively weak. Thus no relaxation of the V_h selection rules was noted in the infrared spectrum of HgCl₂(C₂H₄).

(5) HgCl₂ Complex with Propylene. The infrared spectrum of propylene in an argon matrix has been reported by Barnes and Howells.¹¹ Figure 6 shows the infrared spectrum of propylene in an argon matrix in the 1700-550-cm⁻¹ region. Table III compares our frequencies with those of previous investigators. Because of its low symmetry (C_s) , propylene exhibits at least 12 bands in this region. When propylene was reacted with $HgCl_2$, the spectrum shown in the bottom of Figure 6 was obtained. The three bands at 1046.2 (ν_{17}) , 1004 (ν_{18}) , and 930.1 (v_{19}) (all marked by c in Figure 6) newly appear in the complex, and all these bands are shifted to higher frequencies upon complexation, the largest shift being +20.2 cm⁻¹ for the CH₂ wagging mode (ν_{11}) . Although no new bands were observed for other out-of-plane (A'') modes such as ν_{16} and ν_{20} , the former became stronger and the latter shifted slightly (1.0 cm^{-1}) to higher frequency and its bandwidth increased. These results suggest the presence of unresolved complex bands at slightly higher frequencies than those of free propylene. Thus, it is concluded that all out-of-plane modes are more or less shifted to higher frequencies upon complexation with HgCl₂. This should be contrasted to the in-plane (A') modes which do not show any shifts by complexation. The only exception is the ν_6 (C=C stretching) mode which was shifted by ca. 20 cm⁻¹ to a lower frequency. Such a shift could not be observed previously for the ethylene complex because of its selection rules. It should be noted, however, that this shift (20 cm^{-1}) is much smaller than that observed for other Pt(II)-olefin complexes (170-150 cm⁻¹).¹⁵ In the low-frequency region, two new bands were observed at 405.3 and 401.0 cm⁻¹ upon complexation of HgCl₂ with propylene. As expected, these frequencies are almost the same as those of HgCl₂(C₂H₄).

The present results obtained for $HgCl_2(C_3H_6)$ are basically the same as those for $HgCl_2(C_2H_4)$. Thus, a side-on structure similar to that proposed for the ethylene complex is suggested. However, the present results provide more definitive support for such a structure since we observed that at least three outof-plane bands were shifted to higher frequencies and the C==C stretching band was shifted to a lower frequency.

(6) HgCl₂ Complex with Benzene. Previous workers¹⁶ reported three bands at 1480.5 (ν_{13} , E_{1u} , in-plane ring deformation), 1038 (ν_{14} , E_{1u}, in-plane CH bend), and 682.5 cm⁻¹ (v_4 , A_{2u}, out-of-plane CH bend) for C₆H₆ diluted to 0.2-0.1% in argon. Using similar concentrations, we observed bands at 1484.4 (strong), 1041.4 (medium), 1039.8 (shoulder), 682.3 (strong), 679.8 (strong), and 675.5 (very strong) cm^{-1} (Figure 5). Upon annealing the matrix, the bands at 1484.4, 1041.4, 1039.8, and 675.5 cm^{-1} become weaker and the three bands reported by previous investigators at ca. 1480, 1038, and 682.5 cm⁻¹ become stronger. We have, therefore, assigned these three bands to a benzene aggregate. According to our results, monomeric benzene in an argon matrix absorbs at 1484.4 (ν_{13}), 1041.4 and 1039.8 (ν_{14} split slightly by the matrix effect), and 675.5 cm⁻¹ (ν_4), as is shown in Table II. The 679.8-cm⁻¹ band in our spectrum is probably due to the dimeric species. Previous workers noted that their ν_4 frequency (682.5 cm⁻¹) is unusually high compared with its gas-phase value (671 cm^{-1}). According to our new assignments, v_4 in an argon matrix is only 4.5 cm⁻¹ higher than that in the gas phase.

Figure 5 shows that the only noticeable change resulting from the reaction of benzene with HgCl₂ is the appearance of a new strong band at 685.2 cm^{-1} (marked by c). This band is definitely assigned to the ν_4 vibration of HgCl₂(C₆H₆) since its intensity increases as the concentration of HgCl₂ increases. Then, ν_4 of free C₆H₆ has been shifted +9.7 cm⁻¹ by complex formation. A similar shift was observed for the ν_4 of free C₆D₆ at 497.7 cm^{-1} which was shifted to 506.0 cm^{-1} in HgCl₂(C₆D₆). The ratio, ν_4 (C₆H₆)/ ν_4 (C₆D₆) is 1.357 for free benzene and 1.354 for complexed benzene. This again indicates that the complexation causes very little perturbation on the electronic structure of benzene. In the low-frequency region, two new Hg-Cl stretching bands were observed at 405.1 and 400.8 cm^{-1} . These frequencies are similar to those observed for the HgCl₂ complexes of other unsaturated hydrocarbons.

Our results mentioned above clearly indicate that two inplane modes (ν_{13} and ν_{14}) are not shifted whereas one outof-plane mode (ν_4) is shifted to a higher frequency by complexation with HgCl₂. This implies that the HgCl₂ molecule is probably located above the benzene plane. Furthermore, the fact that the 9:6 intensity ratio of two strong Hg-Cl stretching bands near 400 cm⁻¹ remains unchanged after complexation with benzene seems to suggest the equivalence of the two chlorine atoms in the benzene complex. Thus, the Cl-Hg-Cl axis is probably parallel to the benzene plane although its exact location relative to the benzene nucleus cannot be deduced from the present work. It should be noted, however, that HgCl₂ is only very loosely bound to benzene since the infrared spectrum shows that the D_{6h} selection rules are still retained in the complex. Previously, Fredin and Nelander^{17,18} studied the infrared spectra and structures of benzene complexed with Cl₂, Br₂, and ICl¹⁷ and I₂¹⁸ in nitrogen matrices. In the former three complexes, they observed that most benzene fundamentals become infrared active upon complex formation. Thus, they suggested an oblique coordination of the halogen molecule which interacts mainly with one of the C==C bonds of benzene.

Figure 7. Matrix-isolation infrared spectra of 1,3-butadiene (top) and $HgCl_2(C_4H_6)$ (bottom). The left bottom curves indicate the results obtained by reacting relatively low concentrations of butadiene (Ar/C_4H_6 = 200/1) and HgCl₂ (vaporized at 298 K). The right bottom curve denotes the spectrum of the CH₂ wagging region obtained by reacting relatively high concentrations of butadiene (Ar/C_4H_6 = 500/1) and HgCl₂ (vaporized at 350 K). In both cases, the dotted lines indicate the spectra obtained after annealing. c, c', and p denote the bands due to HgCl₂(C₄H₆), (HgCl₂)₂(C₄H₆), and (C₄H₆)_x, respectively.

In the $I_2(C_6H_6)$ complex, only two forbidden fundamentals $(\nu_2(A_{1g}) \text{ and } \nu_{11}(E_g))$ became infrared active by complexation. Thus, they proposed a structure in which the I-I axis coincides with the C_6 axis of benzene (axial coordination). Our results on HgCl₂(C₆H₆) are different from either of these halogenbenzene complexes in that no violation of the D_{6h} symmetry selection rules is apparent.

(7) HgCl₂ Complexes with 1,3-Butadiene. The infrared spectrum of 1,3-butadiene (C₄H₆) in the gaseous phase has been measured and assigned in terms of a symmetric-trans structure.¹⁹ As is shown by the upper trace of Figure 7, four strong bands were observed at 1596.7 (C=C stretching), 1380.3 (CH₂ scissoring), 1022.6 (CH₂ twisting), and 906.0 cm⁻¹ (CH₂ wagging) in an argon matrix. These frequencies are very close to those reported for the gaseous phase. Furthermore, no new bands were observed in an argon matrix. We, therefore, conclude that butadiene in an argon matrix is also symmetric-trans.

If 1,3-butadiene (0.05% in argon) is reacted with HgCl₂ vaporized at room temperature, the spectrum shown by the lower trace (solid curve) of Figure 7 is obtained. Three new bands (marked by c) are clearly visible at 1581.7, 1027.3, and 922.0 cm⁻¹ which are assigned to the C=C stretching, CH₂ twisting, and CH₂ wagging modes of the HgCl₂(C₄H₆) complex, respectively. If this matrix is warmed to 40 K followed by recooling to 10 K, the spectrum shown by the dotted line is obtained. It is seen that the three complex bands mentioned above become stronger relative to the free butadiene bands.

These results show that the C==C stretching band is shifted by -15 cm^{-1} , the in-plane CH₂ scissoring band is not shifted, and the two out-of-plane bending bands (CH₂ twisting and wagging) are shifted by +4.7 and +16.0 cm⁻¹, respectively, upon complexation with HgCl₂. Similar to the cases of other olefin complexes, the present results support a side-on coordination of HgCl₂ to one of the C==C bonds of 1,3-butadiene. Table II summarizes the observed frequencies of C₄H₆ and HgCl₂(C₄H₆).

If a relatively high concentration of butadiene (0.2% in argon) is reacted with a relatively high concentration of HgCl₂ vaporized at 350 K, the spectrum shown on the right section of Figure 7 is obtained. In addition to the CH₂ wagging mode of the 1:1 complex at 922.0 cm⁻¹ (marked by c), a new band emerges at 927.7 cm⁻¹ (marked by c'). Warming this matrix

to 40 K followed by cooling to 10 K caused a marked decrease in the intensity of the free butadiene band at 906.0 $\rm cm^{-1}$ and an increase in the intensities of both c and c' bands. Since this experiment was carried out with a high concentration of HgCl₂, it is reasonable to assign the 927.7-cm⁻¹ band (c') to the 2:1 complex, $(HgCl_2)_2(C_4H_6)$. Bands characteristic of the 2:1 complex could not be observed in other regions of the spectra probably because other modes are much less sensitive to the coordination of the second HgCl₂ molecule. In the low-frequency region, the Hg-Cl stretching bands of these complexes were observed at 404.5 (Hg35Cl2) and 400.9 cm⁻¹ (Hg 35 Cl 37 Cl). However, no spectral changes were noted by changing the relative concentration of HgCl₂. A possible structure of the 2:1 complex may be depicted as

since butadiene retains its symmetric-trans configuration and HgCl, coordinates to the C = C bond in a side-on fashion.

Acknowledgment. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research.

References and Notes

- (1) For example, see G. A. Ozin in "Vibrational Spectroscopy of Trapped
- Species', H. E. Hallam, Ed., Wiley, New York, N.Y., 1973, p 403.
 (2) D. A. Van Leirsburg and C. W. DeKock, *J. Phys. Chem.*, 78, 134 (1974).
 (3) D. Tevault and K. Nakamoto, *Inorg. Chem.*, 15, 1282 (1976).
- (4) D. Tevault and K. Nakamoto, Spectrosc. Lett., 9, 185 (1976)
- (5) M. J. Grogan and K. Nakamoto, *Inorg. Chim. Acta*, 1, 228 (1967).
 (6) A. Loewenschuss, A. Ron, and O. Schnepp, *J. Chem. Phys.*, **50**, 2502 (1968).

- (1906).
 A. Givan and A. Loewenschuss, J. Chem. Phys., 64, 1967 (1976).
 S. T. King, J. Chem. Phys., 49, 1321 (1968).
 H. Dubost and A. Abouaf-Marguin, Chem. Phys. Lett., 17, 269 (1972).
 W. G. Fateley, H. A. Bent, and B. Crawford, Jr., J. Chem. Phys., 31, 204
- (1959) (11) A. J. Barnes and J. D. R. Howells, J. Chem. Soc., Faraday Trans. 2, 69, 532
- (1973).(12) For example, see J. Chatt, L. A. Duncanson, and R. G. Guy, Nature (London),
- 184, 526 (1959).
- (13) M. J. Grogan and K. Nakamoto, J. Am. Chem. Soc., 88, 5454 (1966).
- (14) L. Fredin and B. Nelander, J. Mol. Struct., 16, 205 (1973).
 (15) D. B. Powell, J. G. V. Scott, and N. Sheppard, Spectrochim, Acta, Part A. 28, 327 (1972).
- (16) M. Spoliti, S. N. Cesaro, and V. Grosso. Spectrochim. Acta, Part A, 32, 145 (1976).
- L. Fredin and B. Nelander, *Mol. Phys.*, 27, 885 (1974).
 L. Fredin and B. Nelander, *J. Am. Chem. Soc.*, 96, 1672 (1974).
 R. K. Harris, *Spectrochim. Acta*, 20, 1129 (1964).

The Addition of Alkyl Halides to Rhodium(I) Dithiolene Complexes. The Synthesis, Structure, and Chemical Properties of Rhodium(III) Acyl Species

Chien-Hong Cheng, Bruce D. Spivack, and Richard Eisenberg*

Contribution from the Department of Chemistry, University of Rochester, Rochester, New York 14627. Received July 16, 1976

Abstract: The Rh(1) complex $[Rh(CO)(PPh_3)(mnt)]^-$ (mnt = maleonitriledithiolate) reacts with alkyl halides R-X (X = 1, R = Me, Et. n-Pr, n-Bu, $n-C_{10}H_{21}$; X = Br, R = Bz) to form a series of stable Rh(111) acyl anions. The complexes have been characterized by IR and ¹H NMR spectroscopy, and the structure of a representative member of the series (R = Et) has been determined by single-crystal x-ray diffraction. In all of the complexes (except for R = Me) the α -methylene protons of the acyl ligand are magnetically nonequivalent indicating that the acyl group is bonded to a chiral center which is preserved on the NMR time scale. The structure determination of (AsPh₄)[RhI(COEt)(PPh₃)(mnt)] shows the complex to crystallize in space group $P2_1/a$ (C_{2h} ⁵) in a cell of dimensions a = 18.466 (6), b = 13.608 (5), c = 19.088 (8) Å, $\beta = 106.39$ (1)° with four molecules per unit cell ($\rho_{exptl} = 1.54$ (2), $\rho_{calcd} = 1.558$ g/cm³). The Rh(111) acyl anion adopts a square pyramidal structure with the acyl group occupying the apical position at a distance of 2.006 (14) Å from the Rh(III) ion. In the base of the square pyramid the Rh-S distances are unequal, reflecting the differing influence of the trans ligands (2.323 (3) Å trans to phosphine vs. 2.269 (3) Å trans to iodide). The structure determination thus affirms the diastereotopic nature of the α -methylene protons in the static structure. Addition of Ag⁺ to solutions of the Rh(111) acyl anions results in the removal of iodide and the formation of neutral acyl species in which the α -methylene protons appear magnetically equivalent. Solvent exchange is presumed to ocur rapidly in these systems since neutral five-coordinate complexes can be isolated in the presence of coordinating solvents. Heating solutions of the neutral acyl species in THF or CH_2Cl_2 results in the migration of the R group (R = Me, Et, Bz) from the acyl carbon to one of the sulfur donor atoms of the dithiolene ligand to give S-alkylated Rh(1) complexes of the formula $[Rh(CO)(PPh_3)(R-mnt)]$. The reaction of $[Rh(CO)(PPh_3)(mnt)]^-$ with OEt₃+ yields a mixture of the S-ethyl complex and the neutral propanoyl species which upon warming in THF converts entirely to the Rh(CO)(PPh₃)(Et-mnt) complex. The dicarbonyl complex [Rh(CO)₂(mnt)]⁻ is considerably less reactive than its monosubstituted triphenylphosphine derivative.

The formation of rhodium acyl species occurs in a variety of metal promoted and catalyzed reactions ranging from the decarbonylation of aldehydes and acid chlorides^{1,2} to ketone syntheses,^{3,4} hydroformylation^{5,6} and the carbonylation of methanol to acetic acid.⁷ In many of these studies the existence of Rh acyl intermediates has been established by observation of the characteristic carbonyl stretch around 1700 cm⁻¹ but in others the transient acyl species are proposed based solely

on the reaction products. In cases where stable Rh acyl complexes have been synthesized, their characterization has been mainly by IR and NMR spectroscopy.^{1,2,8–10} Only one x-ray structure determination of a rhodium acyl complex has been reported to date.¹¹ Consequently there has been little systematic development of the structure-reactivity relationship for these chemically interesting systems.

In this paper, we report the synthesis and characterization